141 research outputs found

    Climate assessment of single flights: Deduction of route specific equivalent CO2 emissions

    Get PDF
    Climate impact of anthropogenic activities is more and more of public concern. But while CO2 emissions are accounted in emissions trading and mitigation plans, emissions of non-CO2 components contributing to climate change receive much less attention. One of the anthropogenic emission sectors, where non-CO2 effects play an important part, is aviation. Hence, for a quantitative estimate of total aviation climate impact, assessments need to comprise both CO2 and non-CO2 effects (e.g., water vapor, nitrogen dioxide, and contrails), instead of calculating and providing only CO2 impacts. However, while a calculation of CO2 effects relies directly on fuel consumption, for non-CO2 effects detailed information on aircraft trajectory, engine emissions, and ambient atmospheric conditions are required. As often such comprehensive information is not available for all aircraft movements, a simplified calculation method is required to calculate non-CO2 impacts. In our study, we introduce a simple calculation method which allows quantifying climate assessment relying on mission parameters, involving distance and geographic flight region. We present a systematic analysis of simulated climate impact from more than 1000 city pairs with an Airbus A330-200 aircraft depending on the flight distance and flight region to derive simplified but still realistic representation of the non-CO2 climate effects. These new formulas much better represent the climate impact of non-CO2 effects compared to a constant CO2 multiplier. The mean square error decrease from 1.18 for a constant factor down to 0.24 for distance dependent factors and can be reduced even further to 0.19 for a distance and latitude dependent factor

    Factors determining airlines' costs for climate protecting market-based measures

    Get PDF
    This paper investigates the factors influencing airline’s costs for climate protecting market-based measures. It is based on selected results of the interdisciplinary research project AviClim (Including Aviation in International Protocols for Climate Protection). AviClim has investigated how to limit aviation’s full climate impact best from an environmental and economic point of view. In this research project, both long-lived CO2 and short-lived non-CO2 effects of aviation have been addressed simultaneously and climate protecting scenarios for aviation in the timeframe 2010-2030 have been developed. On this basis, the factors determining aviation’s costs for climate protecting measures have been analysed. Results indicate that the choice of the market-based measure, it’s regional scope, the metric chosen for the translation of the non-CO2 impacts into equivalent CO2 and the prices for equivalent CO2 are important factors for airline’s costs. An analysis for single flights reveals remarkable differences in specific emissions (tons CO2 equivalent/flight kilometre). An investigation for groups of airlines differentiated by business model and country of origin indicates that the world regions served by the airlines, the business model, the length and the emission characteristics of the flights are further important factors for the costs of the regulating measure

    Climate-Optimised Intermediate Stop Operations: Mitigation Potential and Differences from Fuel-Optimised Configuration

    Get PDF
    Saving fuel by splitting a flight mission with an intermediate stop for refuelling is described by the concept of intermediate stop operations. This can also be beneficial to the climate impact of aviation, if the flight level and intermediate stop airport are selected accordingly. This study aims to estimate the mitigation potential of an implementation of climate-optimised intermediate stop operations for European long-haul flights and compare it to fuel-optimal operations. For this purpose, fuel consumption and emissions are simulated along four-dimensional trajectories for the selected annual flight plan, and their average temperature response is calculated. A comparison between the reference case and climate-optimised as well as fuel-optimised scenarios shows a significant climate mitigation potential and reveals a shift of trajectories to lower latitudes and altitudes. However, increased flight times and fuel consumption limit implementation from stakeholders’ perspectives

    The CO2 and non-CO2 climate effects of individual flights: simplified estimation of CO2 equivalent emission factors

    Get PDF
    As aviation’s contribution to anthropogenic climate change is increasing, industry aims at reducing the aviation climate effect. However, the large contribution of non-CO2 effects to the total climate effect of aviation and their large variability for each individual flight inhibit finding appropriate guidance. Here, we present a method for the simplified calculation of CO2 equivalent emissions, expressed using the physical climate metrics ATR100 or AGWP100, from CO2 and non-CO2 effects for a given flight, exclusively based on the aircraft seat category as well as the origin and destination airports. The simplified calculation method estimates non-CO2 climate effects of air traffic as precisely as possible, without detailed information on the actual flight route, actual fuel burn, and current weather situation. For this purpose, we evaluate a global data set containing detailed flight trajectories, flight emissions, and climate responses, and derive a set of regression formulas for climate effects, which we call climate effect functions, as well as regression formulas for fuel consumption and NOx emissions. Compared to previous studies, this method is available for a larger number of aircraft types, including most commercial airliners with seat capacities starting from 101 passengers, and delivers more specific results through a clustering approach. The climate effects calculated using the climate effect functions derived in this study exhibit a mean absolute relative error of 15.0 % and a root mean square error of 1.24 nK with respect to results from the climate response model AirClim. The climate effect functions are designed for climate footprint assessments, but would not create an incentive in an emission trading system, for which detailed information on the current weather as well as the actual flight route and profile would be required

    A concept for multi-criteria environmental assessment of aircraft trajectories

    Get PDF
    Comprehensive assessment of the environmental aspects of flight movements is of increasing interest to the aviation sector as a potential input for developing sustainable aviation strategies that consider climate impact, air quality and noise issues simultaneously. However, comprehensive assessments of all three environmental aspects do not yet exist and are in particular not yet operational practice in flight planning. The purpose of this study is to present a methodology which allows to establish a multi-criteria environmental impact assessment directly in the flight planning process. The method expands a concept developed for climate optimisation of aircraft trajectories, by representing additionally air quality and noise impacts as additional criteria or dimensions, together with climate impact of aircraft trajectory. We present the mathematical framework for environmental assessment and optimisation of aircraft trajectories. In that context we present ideas on future implementation of such advanced meteorological services into air traffic management and trajectory planning by relying on environmental change functions (ECFs). These ECFs represent environmental impact due to changes in air quality, noise and climate impact. In a case study for Europe prototype ECFs are implemented and a performance assessment of aircraft trajectories is performed for a one-day traffic sample. For a single flight fuel-optimal versus climate-optimized trajectory solution is evaluated using prototypic ECFs and identifying mitigation potential. The ultimate goal of such a concept is to make available a comprehensive assessment framework for environmental performance of aircraft operations, by providing key performance indicators on climate impact, air quality and noise, as well as a tool for environmental optimisation of aircraft trajectories. This framework would allow studying and characterising changes in traffic flows due to environmental optimisation, as well as studying trade-offs between distinct strategic measure

    Evaluating the climate impact of aviation emission scenarios towards the Paris agreement including COVID-19 effects

    Get PDF
    Aviation is an important contributor to the global economy, satisfying society’s mobility needs. It contributes to climate change through CO2 and non-CO2 effects, including contrail-cirrus and ozone formation. There is currently significant interest in policies, regulations and research aiming to reduce aviation’s climate impact. Here we model the effect of these measures on global warming and perform a bottom-up analysis of potential technical improvements, challenging the assumptions of the targets for the sector with a number of scenarios up to 2100. We show that although the emissions targets for aviation are in line with the overall goals of the Paris Agreement, there is a high likelihood that the climate impact of aviation will not meet these goals. Our assessment includes feasible technological advancements and the availability of sustainable aviation fuels. This conclusion is robust for several COVID-19 recovery scenarios, including changes in travel behaviour

    Climate Change Functions Update: Geographical extension, refinement and comparison with aCCFs

    Get PDF
    For the planning of eco-efficient flight trajectories detailed knowledge on the climate impact in response to local aviation emissions is a major premise. For this purpose, so-called climate change functions (CCFs) were calculated by means of a Lagrangian approach within the atmospheric chemistry climate model system EMAC (ECHAM5/MESSy Atmospheric Chemistry Model). The CCFs contain temporally and spatially resolved information on the climate impact of standardized non-CO2 aviation emissions
    • …
    corecore